"哥尼斯堡七桥问题"的解决,与后来数学的图论与几何拓扑有关。 1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。七桥问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理F”。 四色定理又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理是一个著名的数学定理,通俗的说法是:每个平面地图都可以只用四种颜色来染色,而且没有两个邻接的区域颜色相同。 1976年借助电子计算机证明了四色问题,问题也终于成为定理,这是第一个借助计算机证明的定理。四色定理的本质就是在平面或者球面无法构造五个或者五个以上两两相连的区域。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。“四色问题”被证明不仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。
。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
这个图不难解决,不是反例。四色定理是电脑都没有找到反例,人脑更不可能找到反例。
推发布温馨提示: